Engineering Analysis

November 6, 2012

Matt Garcia, Randy Jackson, Jeremy Mountain, Qian Tong, Hui Yao

College of Engineering, Forestry, and Natural Sciences Northern Arizona University

Overview

- Problem Statement
- Updated Design
- Material Analysis
- Compression Analysis
- Bearing Analysis
- Screw Analysis
- Cost Analysis
- Updated Timeline

Problem Statement

Need: The eccentric loading of the test specimens causes fatigue failure.

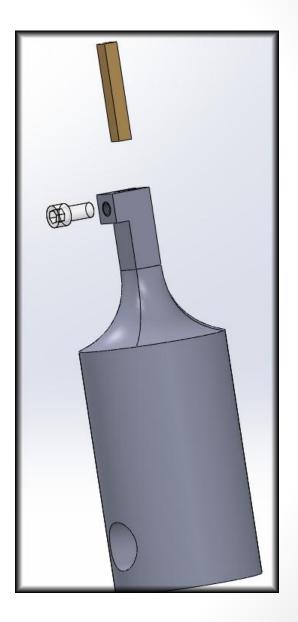
Goal: *Design an improved material testing fixture.*

Constraints:

- 1. Specimen size (3 x 3 x 20) mm
- 2. Exposed Length (6 mm)
- 3. Grips cannot bite into specimen
- 4. Push rods and grips must be non-magnetic
- 5. Distance between magnets (10mm)
- 6. Magnetic Field (0.5 1.0 T)
- 7. Axial Alignment (50 μm)

Objectives:

Objectives	Basis for Measurement	Units
Axially Aligned	Distance from Perfect Alginment	μm
Tension Compression Testing	Repeated Testing	# of Tests
Damage Specimen	Cost of Specimen Time to Replace	\$\$ / Month
Inexpensive	Machining Cost Material Cost	\$\$


Updated Design

Previous Design

- Interference with magnets
- Spacing > 10 mm

New Design

- No Interference
- Spacing < 10 mm

Material Analysis

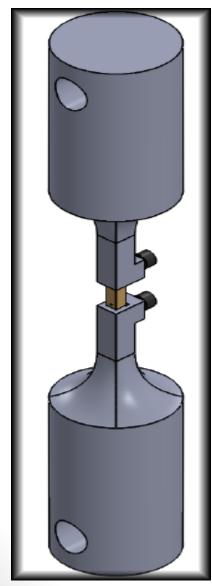
Requirement:

• All parts of the fixture need to be non-magnetic

Types of Non-magnetic materials:

- Copper (Yield Strength)
- Silver (Expensive)
- Lead
- Magnesium
- Platinum
- Aluminum Alloy

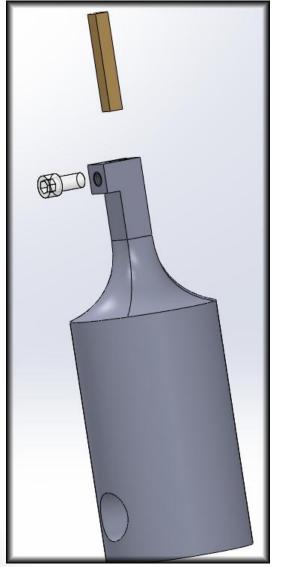
(Chemically Active) (Too Expensive)


(Toxic)

(Cheap, easy to get)

Material Analysis – Cont.

1000 series	Pure aluminum. Basic aluminum without any other addition.
2000 series	Alloyed with copper. Formerly used in aerospace applications.
3000 series	Alloyed with <i>manganese</i> . Rust-proof material.
4000 series	Alloyed with <i>silicon</i> . Wear resistant material.
5000 series	Alloyed with <i>magnesium</i> . Prevents the oxidation.
6000 series	Alloyed with <i>magnesium</i> and <i>silicon</i> . Easy to machine and inexpensive.
7000 series	Alloyed with <i>zinc</i> . Now used for aerospace applications.


Material Analysis – Cont.

Aluminum 6061 – T6

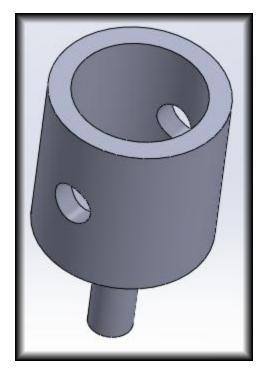
- A precipitation hardening aluminum alloy.
- It has good mechanical properties.
- It is one of the most common alloys of aluminum for general purpose use
- 6061 T1
- 6061 T3
- 6061 T4
- 6061 T5

Material Analysis – Cont.

Nylon Type 66

• One of the most commonly used polymers.

- Easy and cheap to get.
- Less Yield Strength than aluminum alloy
- Brass
- Aluminum

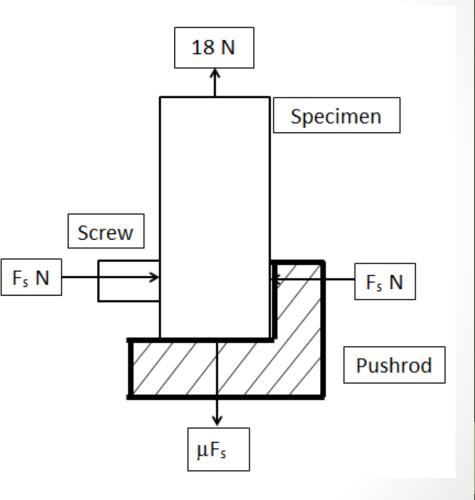

Compression Analysis

Results:

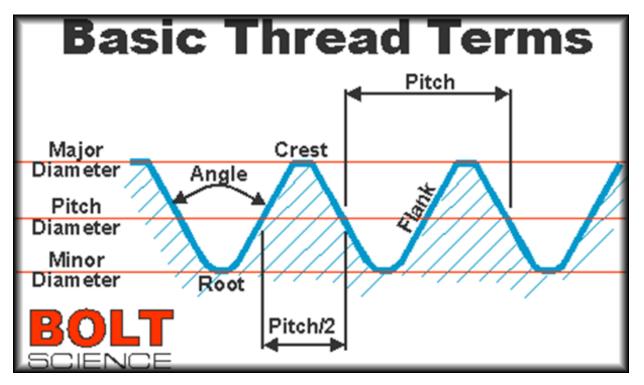
Length	3	mm
Width	3	mm
A #0.0	9	mm ²
Area	0.000009	m²

Force (N)	Stress (N/m ²)
10	1.111E+06
20	2.222E+06
30	3.333E+06
40	4.444E+06
50	5.556E+06
60	6.667E+06
70	7.778E+06
80	8.889E+06
90	1.000E+07
100	1.111E+07

Bearing Analysis


	Pin 10mm	Pin 15mm	Pin 20mm	Pin 25mm
Outer Diameter (mm)	Stress (MPa)	Stress (MPa)	Stress (MPa)	Stress (MPa)
31.0	16.00	10.67	8.00	6.40
32.0	8.00	5.33	4.00	3.20
33.0	5.33	3.56	2.67	2.13
34.0	4.00	2.67	2.00	1.60
35.0	3.20	2.13	1.60	1.28
36.0	2.67	1.78	1.33	1.07
37.0	2.29	1.52	1.14	0.91
38.0	2.00	1.33	1.00	0.80
39.0	1.78	1.19	0.89	0.71
40.0	1.60	1.07	0.80	0.64

Screw Analysis


Sum of the forces:

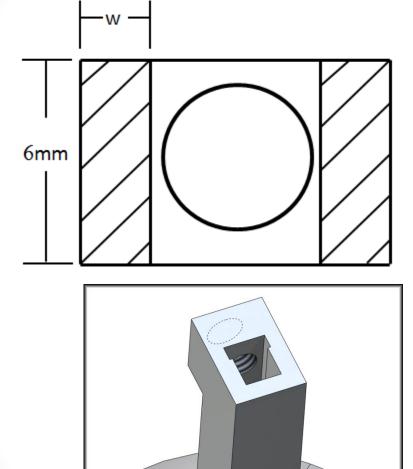
$$\sum F_{y} = 18N - \mu F_{s} = 0$$
$$F_{s} = \frac{18}{\mu}N$$

F _s [N]	Friction
120.0	0.2
36.0	0.5
21.2	0.9
15.0	1.2

Screw Analysis – Cont.

Source: www.boltscience.com

Randy


Screw Analysis – Cont.

Screw: M3 x 0.5 x 6 mm

Major Diam. D [mm]	Minor Diam. dr [mm]	Thread Engagement Length Le [mm]	Pitch Diam. dp [mm]	Pitch p [mm]	External Shear Area [mm ²]	Internal Shear Area [mm ²]
3.000	2.385	3.500	2.567	0.500	18.623	32.986

	Nylon Type 66			Brass		
	Yield Str. [MPa]	Force [N]	Coeff. Friction	Yield Str. [MPa]	Force [N]	Coeff. Friction
	45	120	0.15	130	51.43	0.35
External Thread Force to Fail [N]	838.1			2	421.0	
Internal Thread Shear to Fail [N]	8	8081.6			081.6	

Screw Analysis – Cont.

M3 x 0.5 x 6mm	Break	Fixture
Wall 'w'	Stress MPa	FS
0.50	20.00	12.1
0.55	18.18	13.3
0.60	16.67	14.5
0.65	15.38	15.7
0.70	14.29	16.9
0.75	13.33	18.1
0.80	12.50	19.3
0.85	11.76	20.5
0.90	11.11	21.7
0.95	10.53	22.9
1.00	10.00	24.1
1.05	9.52	25.3
1.10	9.09	26.5
1.15	8.70	27.7
1.20	8.33	28.9
1.25	8.00	30.1

14

Randy

Cost Analysis

• Cost of Metals

Material	\$/lb	Description	Scale
Copper	3-3.5	A little Expensive	4
Silver	30-32	Too expensive	2
Lead	2.3-3.0	A little Expensive	5
Magnesium	2-2.6	A little Expensive	6
Aluminum Alloy	0.6-0.9	Inexpensive	9
Platinum	50-60	Too Expensive	1

Cost Analysis – Cont.

• Cost of Aluminum Alloys

Aluminum Alloy	Alloyed Component	Price: \$/kg
1000 Series	Pure 99%	2.6-4
2000 Series	Copper	2.5-4.2
3000 Series	Manganese	3.5-3.6
4000 Series	Silicon	3.0-5
5000 Series	Magnesium	2.5-3.5
6000 Series	Magnesium Zinc	2.5-3.5
7000 Series	Zinc	2.5-5.5

Cost Analysis – Cont.

Cost of Screws

Screw	Price / piece [\$/piece]
Bronze (high Strength)	0.029-0.032
Brass	0.1-1
Nylon	0.005-0.006

Conclusion

- Pushrod: Aluminum 6061 T6
- Sleeve: Aluminum 6061 T6
- Pin: Aluminum 6061 T6
- Screw: Nylon 66

Updated Timeline

	Task Name	11 S	_	() W	Sep 3	о, '1 т	2 M	C F	oct 14	4, '12 S	: W	_	t 28, '	12 M	N	1	1, '12 S	_		25, ¹	
1	Groups Assigned		-	· 9/2	•		191			10				101			<u> </u>		<u> </u>		
2	Contact Client, set up meeting	1	E	₽																	
3	Meet with Client			ولي	/2 7																
4	Work on and update Website													2	_	_	_	_	_		
5	Presentation 1 - Needs Identification, Product Specification, and Project Plan				*	10,	/4														
6	Report 1				-	1	0/5														
7	Meet with Client regarding design ideas		ł						ŧ	n l											
8	Modify designs, select best design										₽										
9	Presentation 2 - Concept Generation and Selection										4 1	0/23	;								
10	Report 2 - Concept Generation and Selection										ð	10/	26								
11	Engineering Analysis													2							
12	Presentation 3 - Engineering Analysis													\$ -1	1/6						
13	Report 3 - Engineering Analysis		i												6 11	/9					
14	Final Design Review and Project Proposal														(_	_	_	2		
15	Presentation - Final Design Review and Project Proposal																		- A	- 11 /2	27
16	Final Design Review and Project Proposal																			*	L1/30
17	Meet with Client		1	_	_		_		_	_	_	_	_		_		_	_	_	_	

Matt

References

- 1. <u>http://www.engineershandbook.com/Tables/frictionc</u> <u>oefficients.htm</u>
- 2. <u>http://www.engineersedge.com</u>
- 3. <u>http://www.alibaba.com</u>
- 4. Shigley's Mechanical Engineering Design, 9th Edition.
- 5. <u>http://www.tcdcinc.com</u>
- 6. <u>http://www.engineeringtoolbox.com/friction-</u> <u>coefficients-d 778.html</u>